On Hadamard Matrices Constructible by Circulant Submatrices

By C. H. Yang

Abstract

Let $V_{2 n}$ be an H-matrix of order $2 n$ constructible by using circulant $n \times n$ submatrices. A recursive method has been found to construct $V_{4 n}$ by using circulant $2 n \times 2 n$ submatrices which are derived from $n \times n$ submatrices of a given $V_{刃 n}$. A similar method can be applied to a given $W_{4 n}$, an H-matrix of Williamson type with odd n, to construct $W_{8 n}$. All $V_{2 n}$ constructible by the standard type, for $1 \leqq n \leqq 16$, and some $V_{2 n}$, for $n \geqq 20$, are listed and classified by this method.

Let H_{n} be an $n \times n$ Hadamard matrix. Although it is conjectured that no circulant $H_{4 n}$-matrix exists for $n>1$ (see [3]), it is known that many $H_{4 n}$-matrices can be constructed by using circulant submatrices of order n or $2 n$. (For H-matrices of Williamson type, see [1], [2], [4].)

Let $V_{2 n}$ be an $H_{2 n}$-matrix constructible by using circulant $n \times n$ submatrices. Then $V_{2 n}$ can be constructed by the following standard type:

$$
M_{2 n}=\left[\begin{array}{cc}
A & B \tag{*}\\
-B^{T} & A^{T}
\end{array}\right], \quad \text { where } A, B \text { are } n \times n \text { circulant matrices }
$$

and C^{T} means the transposed matrix of C.
A recursive method has been found to construct $V_{4 n}$ by circulant $2 n \times 2 n$ matrices which are derived by circulant $n \times n$ submatrices of a given $V_{2 n}$. (See Theorem 1, below.) Likewise, let $W_{4 n}$ be an $H_{4 n}$-matrix of Williamson type with odd n; $W_{8 n}$ can be constructed by using $2 n \times 2 n$ symmetric circulant matrices which are derived from $n \times n$ symmetric circulant submatrices of a given $W_{4 n}$. (See Theorem 2.)

Let $S_{n}=\left(\left(e_{i}\right)\right)$ be the $n \times n$ circulant matrix with the first row entries $e_{i},(0 \leqq$ $i \leqq n-1$), all zero except for $e_{1}=1$. Then $n \times n$ circulant matrices A, B of $\left({ }^{*}\right)$ can be written as polynomials in S. (We shall omit the suffix n of S_{n} and others when there is no confusion.)

$$
A=A_{n}(S)=\sum_{i=0}^{n-1} a_{i} S^{i}, \quad B=B_{n}(S)=\sum_{i=0}^{n-1} b_{i} S^{i},
$$

with coefficients $a_{i}, b_{i}=1$ or -1 ; where $S^{0}=I_{n}=$ the $n \times n$ identity matrix.
A sufficient condition for the matrix $M_{2 n}$ of type (*) being an H-matrix is that $M_{2 n} M_{2 n}^{T}=2 n I_{2 n}$ which is equivalent to

$$
\begin{equation*}
A A^{T}+B B^{T}=2 n I_{n} \tag{1}
\end{equation*}
$$

Received March 31, 1970.
AMS 1970 subject classifications. Primary 05B20, 62K05, 05A19; Secondary 15A36, 0504, 1504.
Key words and phrases. Construction of Hadamard matrices, circulant matrices, standard type H-matrices, Williamson type H-matrices, recursive method for H-matrices, table for some H-matrices.

Let $P=P_{n}(S), Q=Q_{n}(S)$ be matrices obtained by replacing -1 by 0 in A, B respectively. Then the condition (1) is equivalent to

$$
\begin{equation*}
P P^{T}+Q Q^{T}=\left(p_{n}+q_{n}-r_{n}\right) I+r_{n} J \tag{2}
\end{equation*}
$$

where $J=J_{n}=\sum_{i=0}^{n-1} S^{i}$ and p_{n}, q_{n} are, respectively, the numbers of 1 's in each row of P, Q. Here, p_{n}, q_{n} and r_{n} must be solutions of the following necessary conditions for existence of $V_{2 n}$.

$$
\begin{equation*}
\left(n-2 p_{n}\right)^{2}+\left(n-2 q_{n}\right)^{2}=2 n \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
p_{n}+q_{n}-r_{n}=\frac{1}{2} n \tag{4}
\end{equation*}
$$

Similarly, by taking $Q^{\prime}=J-Q$, instead of Q in (2), (3), and (4), which is possible since whenever A and B satisfy the condition (1), so do A and $-B$, we obtain the corresponding conditions:

$$
\begin{equation*}
P P^{T}+Q^{\prime} Q^{\prime T}=\left(p_{n}+q_{n}^{\prime}-r_{n}^{\prime}\right) I+r_{n}^{\prime} J \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left(n-2 p_{n}\right)^{2}+\left(n-2 q_{n}^{\prime}\right)^{2}=2 n \tag{6}
\end{equation*}
$$

$$
p_{n}+q_{n}^{\prime}-r_{n}^{\prime}=\frac{1}{2} n .
$$

Since $q_{n}^{\prime}=n-q_{n}$, we also obtain from (7) and (4),

$$
\begin{equation*}
r_{n}^{\prime}=2 p_{n}-r_{n} \tag{8}
\end{equation*}
$$

Theorem 1. Let $M_{2 m}$ be a given $V_{2 m}$-matrix of type (*) satisfying the conditions (2), (3), and (4). Then $M_{4 m}$, a $V_{4 m}$-matrix of type (${ }^{*}$), can be found as follows:

$$
\begin{equation*}
P_{2 m}(s)=P_{m}\left(s^{2}\right)+s^{k} Q_{m}\left(s^{2}\right), \quad Q_{2 m}(s)=P_{m}\left(s^{2}\right)+s^{k} Q_{m}^{\prime}\left(s^{2}\right), \tag{**}
\end{equation*}
$$

where $s=S_{2 m}, Q_{m}^{\prime}=J_{m}-Q_{m}$, and k is any odd integer.
Proof. Since $p_{2 m}=p_{m}+q_{m}, q_{2 m}=p_{m}+\left(m-q_{m}\right), r_{2 m}=2 p_{m}$ are solutions of the conditions (3) and (4) for $n=2 m$ whenever p_{m}, q_{m}, r_{m} are solutions of (3) and (4) for $n=m$, it is sufficient to show that $P_{2 m}$ and $Q_{2 m}$ satisfy the condition (2), i.e.

$$
\begin{equation*}
P_{2 m} P_{2 m}^{T}+Q_{2 m} Q_{2 m}^{T}=m I_{2 m}+2 p_{m} J_{2 m} \tag{5}
\end{equation*}
$$

From (**), the left side of (5) equals, (since $P^{T}(s)=P\left(s^{-1}\right)$),

$$
\begin{aligned}
& \left(P\left(s^{2}\right) P\left(s^{-2}\right)+Q\left(s^{2}\right) Q\left(s^{-2}\right)\right)+\left(P\left(s^{2}\right) P\left(s^{-2}\right)+Q^{\prime}\left(s^{2}\right) Q^{\prime}\left(s^{-2}\right)\right) \\
& \quad+\left[s^{k} P\left(s^{-2}\right)+s^{-k} P\left(s^{2}\right)\right] J_{m}\left(s^{2}\right), \quad\left[\text { since } Q\left(s^{2}\right)+Q^{\prime}\left(s^{2}\right)=J_{m}\left(s^{2}\right)=J_{m}\left(s^{-2}\right)\right] \\
& = \\
& =\frac{1}{2} m I+r_{m} \sum_{i=0}^{m-1} s^{2 i}+\frac{1}{2} m I+\left(2 p_{m}-r_{m}\right) \sum_{i=0}^{m-1} s^{2 i}+2 p_{m}^{m-1} \sum_{i=0}^{2 i+1} s^{2 i+1} \\
& =m I+2 p_{m} J .
\end{aligned}
$$

Let $N_{4 n}$ be a $4 n \times 4 n$ matrix such that

$$
N_{4 n}=\left[\begin{array}{rrrr}
A, & B, & C, & D \\
-B, & A, & -D, & C \\
-C, & D, & A, & -B \\
-D, & -C, & B, & A
\end{array}\right]
$$

where A, B, C, D are $n \times n$ symmetric circulant $(+1,-1)$-matrices. Then a sufficient condition for $N_{4 n}$ being a $W_{4 n}$-matrix is that

$$
N_{4 n} N_{4 n}^{T}=4 n I_{4 n}
$$

Let P, Q, K, and G be matrices obtained by replacing -1 by 0 in A, B, C, and D, respectively. Then, corresponding to the conditions (2)-(4), we obtain

$$
P^{2}+Q^{2}+K^{2}+G^{2}=\left(t_{n}-r_{n}\right) I+r_{n} J
$$

where $t_{n}=p+q+k+g ; p, q, k$, and g are the numbers of 1 's in each row of A, B, C, and D, respectively.

$$
(n-2 p)^{2}+(n-2 q)^{2}+(n-2 k)^{2}+(n-2 g)^{2}=4 n
$$

$$
t_{n}-r_{n}=n
$$

Similarly, corresponding to the conditions (5)-(8), we obtain

$$
P^{2}+Q^{\prime 2}+K^{2}+G^{\prime 2}=\left(t_{n}^{\prime}-r_{n}^{\prime}\right) I+r_{n}^{\prime} J
$$

where $Q^{\prime}=J-Q, G^{\prime}=J-G$, and $t_{n}^{\prime}=p+q^{\prime}+k+g^{\prime} ; q^{\prime}$ and g^{\prime} are, respectively, the numbers of 1 's in each row of Q^{\prime} and G^{\prime}.

$$
\begin{gather*}
(n-2 p)^{2}+\left(n-2 q^{\prime}\right)^{2}+(n-2 k)^{2}+\left(n-2 g^{\prime}\right)^{2}=4 n \\
t_{n}^{\prime}-r_{n}^{\prime}=n
\end{gather*}
$$

Theorem 2. Let $N_{4 m}$ be a given $W_{4 m}$-matrix with odd m satisfying the conditions (2'), (3^{\prime}) and (4^{\prime}). Then $N_{8 m}$, a $W_{8 m}$-matrix, can be found as follows:

$$
\begin{array}{ll}
P_{2 m}(s)=P\left(s^{2}\right)+s^{m} Q\left(s^{2}\right), & Q_{2 m}(s)=P\left(s^{2}\right)+s^{m} Q^{\prime}\left(s^{2}\right) \\
K_{2 m}(s)=K\left(s^{2}\right)+s^{m} G\left(s^{2}\right), & G_{2 m}(s)=K\left(s^{2}\right)+s^{m} G^{\prime}\left(s^{2}\right)
\end{array}
$$

where $s=S_{2 m}, Q^{\prime}=J_{m}-Q$, and $G^{\prime}=J_{m}-G$.
Proof. We know that $P_{2 m}, Q_{2 m}, K_{2 m}$, and $G_{2 m}$ are also symmetric circulant and, as in the proof of Theorem 1, that $p_{2 m}=p+q, q_{2 m}=p+(n-q), k_{2 m}=k+g$, and $g_{2 m}=k+(n-g) ; r_{2 m}=2(p+k)$ are solutions of (3^{\prime}) and (4^{\prime}) for $n=2 m$ whenever p, q, k, g, and r_{m} are solutions of (3^{\prime}) and (4^{\prime}) for $n=m$. Therefore, it is sufficient to prove that the condition (2^{\prime}) is also satisfied, i.e.

$$
P_{2 m}^{2}+Q_{2 m}^{2}+K_{2 m}^{2}+G_{2 m}^{2}=2 m I+2(p+k) J
$$

The condition ($2^{\prime \prime}$) can be checked easily since the process of proof is exactly similar to that of Theorem 1 .

Let $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ be two finite sequences respectively of

$$
P P^{T}=\sum_{i=0}^{n-1} u_{i} S^{i} \quad \text { and } \quad Q Q^{T}=\sum_{i=0}^{n-1} v_{i} S^{i}
$$

where P, Q are $n \times n$ circulant $(0,1)$-matrices; in this case, we also obtain $w_{n-i}=w_{i}$ for $w=u$ or v.

The following Table I, of all constructible $V_{2 n}(1 \leqq n \leqq 16)$ of type (*) with the restriction $p_{n} \leqq q_{n} \leqq \frac{1}{2} n$, is obtained by matching two finite sequences $\left\{u_{i}\right\}$ and
$\left\{v_{i}\right\}$, respectively of $P P^{T}$ and $Q Q^{T}$, such that $u_{i}+v_{i}=r_{n}$ for $1 \leqq i \leqq \frac{1}{2} n$. Here, Theorem 1 serves as a tool of classifying these finite sequences.

Note. 1. $s=S_{n}^{k}$, where k is any integer relatively prime to n.
2. When $q_{n}=\frac{1}{2} n, Q_{n}(s)$ and $Q_{n}^{\prime}(s)$ produce the same finite sequence.
3. * indicates the class of $P_{n}(s)$ and $Q_{n}(s)$ unobtainable by Theorem 1.

It should also be noted that for a given $n \times n$ circulant matrix $K(S)$, all matrices $M(i, j)=S^{i} K\left(S^{j}\right)$, for any integers i and j with $(n, j)=1$, produce the same finite sequence corresponding to $M(i, j) M^{T}(i, j)$. Among all $M(i, j)$ regarded as polynomials in S, there is a polynomial, say R, of least nonnegative degree; we list R, as the representative of all matrices $M(i, j)$ producing the same finite sequence, as $R_{n}(s)$ in the Table I.

In Table I, Classes I and II of $n=16$ are respectively derived from the corresponding classes of $n=8$. Although P_{8} and Q_{8} of Class II cannot be derived from P_{4} and Q_{4}, they produce P_{16} and Q_{16} of Class II, by Theorem 1. In this case, P_{16} and Q_{16} are interchangeable since $p=q=6$, and we have

Table I

n	$P_{n}(s)$	$Q_{n}(s)$
1	0	0
2	0	I
4	I	I
8-I	$I+s$	$I+s+s^{3}+s^{5}$
II*	$I+s^{2}$	$I+s+s^{3}+s^{4}$
10	$I+s+s^{3}$	$I+s+s^{4}+s^{6}$
16-I	$\begin{gathered} I+s+s^{2}+s^{3}+s^{6}+s^{10} \\ \text { or } \\ I+s+s^{2}+s^{4}+s^{7}+s^{8} \end{gathered}$	$\begin{gathered} I+s+s^{3}+s^{6}+s^{8}+s^{12} \\ \text { or } \\ I+s+s^{4}+s^{6}+s^{8}+s^{11} \end{gathered}$
II	$\begin{gathered} I+s+s^{2}+s^{4}+s^{5}+s^{10} \\ \text { or } \\ I+s+s^{2}+s^{5}+s^{6}+s^{8} \end{gathered}$	$\begin{aligned} & I+s+s^{3}+s^{7}+s^{9}+s^{12} \\ & \text { or } \\ & I+s+s^{4}+s^{7}+s^{9}+s^{11} \end{aligned}$
III*	$\begin{gathered} I+s+s^{2}+s^{4}+s^{6}+s^{9} \\ \text { or } \quad I+s^{2}+s^{3}+s^{4}+s^{6}+s^{11} \\ \text { or } \\ I+s+s^{3}+s^{5}+s^{7}+s^{8} \end{gathered}$	$\begin{gathered} I+s+s^{5}+s^{7}+s^{3}+s^{11} \\ \text { or } \quad I+s+s^{2}+s^{6}+s^{9}+s^{12} \\ \text { or } \quad I+s+s^{4}+s^{6}+s^{9}+s^{10} \end{gathered}$

$$
\begin{aligned}
& P(s, k)=P_{8}\left(s^{2}\right)+s^{k} Q_{8}\left(s^{2}\right)=I+s^{4}+s^{k}\left(I+s^{2}+s^{6}+s^{8}\right) \\
& Q(s, k)=P_{8}\left(s^{2}\right)+s^{k} Q_{8}^{\prime}\left(s^{2}\right)=I+s^{4}+s^{k}\left(s^{4}+s^{10}+s^{12}+s^{14}\right)
\end{aligned}
$$

We obtain

$$
P_{16}(s)=I+s+s^{2}+s^{4}+s^{5}+s^{10}=s Q(s, 5)
$$

or

$$
=I+s+s^{2}+s^{5}+s^{6}+s^{8}=s P(s,-1)
$$

since these two polynomials are of distinct type (in the sense of [5]) and of least positive degree in $s=S$ producing the same finite sequence among all $P(s, k)$ and $Q(s, k)$ for this case.

When $n=20$, we obtain two subclasses of matrices P and Q by Theorem 1. We have the following cases:

Subclass-1:

$$
P(s, k)=P_{10}\left(s^{2}\right)+s^{-k} Q_{10}\left(s^{2}\right)=I+s^{2}+s^{6}+s^{-k}\left(I+s^{2}+s^{s}+s^{12}\right)
$$

and

$$
\begin{aligned}
Q(s, k) & =P_{10}\left(s^{2}\right)+s^{-k} Q_{10}^{\prime}\left(s^{2}\right) \\
& =I+s^{2}+s^{6}+s^{-k}\left(s^{4}+s^{6}+s^{10}+s^{14}+s^{10}+s^{1 s}\right)
\end{aligned}
$$

Subclass-2:

$$
\begin{aligned}
P(s, k) & =P_{10}\left(s^{2}\right)+s^{-k} Q_{10}\left(s^{-2}\right) \\
& =I+s^{2}+s^{6}+s^{-k}\left(I+s^{-2}+s^{-8}+s^{-12}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
Q(s, k) & =P_{10}\left(s^{2}\right)+s^{-k} Q_{10}^{\prime}\left(s^{2}\right) \\
& =I+s^{2}+s^{6}+s^{-k}\left(s^{4}+s^{6}+s^{10}+s^{14}+s^{16}+s^{18}\right)
\end{aligned}
$$

Each one of the subclasses produces five distinct designs corresponding to $k=1,3$, 5,7 , and 9. For example, the finite sequence $\left\{u_{2 i+1}\right\}$ of odd components (since the even components $u_{2 i}=r=2$ for all i, it is sufficient to consider only odd components of $\left.\left\{u_{i}\right\}\right)$ corresponding to $P(S, k)$ are: $\left(u_{1}, u_{3}, u_{5}, u_{7}, u_{9}\right)=(4,1,3,2,2),(2,4,2,2,2)$, $(2,3,3,2,2),(3,1,3,3,2)$, and $(2,3,1,3,3)$ for Subclass-1 respectively of $k=1,3$, 5,7 , and 9 ; and $(2,2,3,2,3),(1,3,3,2,3),(2,2,2,4,2),(3,1,3,3,2),(2,4,1,2,3)$ for Subclass-2.

The following Table II is obtained by taking $s=S^{k}$ with k, an integer relatively prime to $n=20$ for $P_{20}=P(s, 9)$ of Subclass-2, i.e. $P_{20}\left(S^{k}\right)=I+S^{2 k}+S^{3 k}+S^{6 k}+$ $S^{9 k}+S^{11 k}+S^{19 k}$.

Starting from $P=Q=I$ for $n=4$, and repeating applications of Theorem 1, we obtain, for example, the following P_{n}, Q_{n} for $n=32$ and 64:

$$
P_{32}=\sum_{\alpha} s^{\alpha}, \quad \text { where } \alpha \in\{0,1,2,3,4,8,9,13,14,16,17,23\}
$$

and
$Q_{32}=\sum_{\beta} s^{\beta}, \quad$ where $\beta \in\{0,2,4,5,7,8,11,14,15,16,19,21,25,27,29,31\} ;$

$$
P_{b 4}=\sum_{\alpha} s^{\alpha}, \quad Q_{64}=\sum_{\beta} s^{3},
$$

Table II

k	($+1,-1$-matrix A corresponding to P_{20}				$\left\{u_{22+1}\right\}$
1	+-++-	- + - - +	- + - - -	----+	2, 4, 1, 2, 3
3	+----	$-++-+$	---+-	--++-	2, 2, 1, 3, 4
7	+ + + + -	-----	$---++$	--+--	4,3,1,2,2
9	++---	-- +--	- + - - +	---++	3,2,1,4, 2

where $\alpha \in\{0,1,2,4,5,6,8,9,11,15,16,17,18,23,26,28,29,31,32,33,34,39$, $43,46,51,55,59,63\}$ and $\beta \in\{0,2,3,4,6,7,8,13,16,18,19,21,25,26,27,28,32$, $34,35,37,41,45,46,47,49,53,57,61\}$.

It should be noted that Theorem 3 of Williamson [4] produces Williamson type matrices of the same order, but of different construction, as given by Theorem 2 of this paper. When $n=29$, we obtain a $W_{4 n}$-matrix (see [7]) with submatrices

$$
P_{29}=\sum_{\alpha} t_{\alpha}, \quad Q_{29}=\sum_{\beta} t_{\beta}, \quad K_{29}=\sum_{\gamma} t_{\gamma}, \quad G_{29}=\sum_{\delta} t_{\delta}
$$

where $t_{k}=S^{k}+S^{29-k} ; \alpha \in\{2,3,5,6,8,12\}, \beta \in\{4,7,9,10,11\}, \gamma \in\{3,4,5,8$, $9,11,13,14\}$, and $\delta \in\{1,3,4,5,8,9,11\}$. By applying Theorem 2, we obtain $W_{8_{n}-}$ matrix with submatrices

$$
P_{58}=\sum_{\alpha} t_{\alpha}, \quad Q_{58}=\sum_{\beta} t_{\beta}, \quad K_{58}=\sum_{\gamma} t_{\gamma} \quad \text { and } \quad G_{58}=\sum_{\delta} t_{\delta},
$$

where $t_{k}=s^{k}+s^{58-k}$ for $k \neq 29$ and $t_{29}=s^{29}$; and $\alpha \in\{4,6,7,9,10,11,12,15$, $16,21,24\}, \beta \in\{1,3,4,5,6,10,12,13,16,17,19,23,24,25,27,29\}, \gamma \in\{6,7,8$ $10,11,13,16,18,19,21,22,23,26,27,28\}$, and $\delta \in\{1,3,5,6,8,9,10,15,16,17$, $18,22,25,26,28,29\}$.

State University College

Oneonta, New York 13820

1. L. D. Baumert \& Marshall Hall, Jr., "Hadamard matrices of the Williamson type," Math. Comp., v. 19, 1965, pp. 442-447. MR 31 \#3344.
2. Marshall Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967. MR 37 \#80.
3. H. J. Ryser, Combinatorial Mathematics, Carus Math. Monographs, no. 14, Math. Assoc. Amer., distributed by Wiley, New York, 1963. MR 27 \#51.
4. J. Williamson, "Hadamard's determinant theorem and the sum of four squares," Duke Math. J., v. 11, 1944, pp. 65-81. MR 5, 169.
5. C. H. YANG, "On designs of maximal $(+1,-1)$-matrices of order $n \equiv 2(\bmod 4)$," Math. Comp., v. 22, 1968, pp. 174-180. MR 37 \#1069.
6. C. H. Yang, "On designs of maximal $(+1,-1)$-matrices of order $n \equiv 2(\bmod 4)$. II," Math. Comp., v. 23, 1969, pp. 201-205. MR 39 \# 1105.
7. L. D. BaUMERT, "Hadamard matrices of orders 116 and 232," Bull. Amer. Math. Soc., v. 72, 1966, p. 237. MR 32 \#4026.
